
Semivariograms

All forms of kriging assume you know Cov (Z (s i ), Z (s j))

Usually, need to estimate this

Big problem: only have one observation at s i and one at s j
usual data-based estimate won’t work!
Also, need vector of Cov (Z (s0), Z (s i )) when haven’t observed Z (s0)

Need a model! How does Cov (Z (s i ), Z (s j)) depend on:

distance between s i and s j
direction from s i to s j
location of s i and s j in the study area
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Two pairs of points, same direction, same distance,
different parts of study area

Same covariance?

●

●

●

●
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Stationary spatial processes

2nd order stationary

µ(s) constant across study area
Cov (Z (s), Z (s + h)) same across study area
h specifies a particular distance and direction
So in previous picture, the two pairs of points would have same Cov

instrinsic stationarity

Var (Z (s)− Z (s + h)) same everywhere
Slightly weaker assumption
Some really care about the difference. I don’t.

We’ll assume 2nd order stationarity

c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 3b Spring 2020 3 / 56



Isotropic spatial process

Cov (Z (s), Z (s + h)) same in all directions
Only depends on distance between two points, i.e. || h||
Anisotropic: Cov (Z (s), Z (s + h)) depends on direction
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Anisotropic spatial process

Geometric anisotropy: simple scaling & rotation → isotropy
draw picture on board

For the most part, we will assume isotropy

If geometric anisotropy, can transform coordinates to make isotropic
If general anisotropy, can repeat what we’re about to do in different
directions
more complications, more details, no change in concept

So, Cov (Z (s i ), Z (s j)) depends on ||s i − s j ||, i.e. Euclidean distance
between s i and s j

If working over large areas, should use great circle distance instead
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Semivariogram cloud

Assuming 2nd order stationarity, so µ constant

so can calculate
(
Z (s i )− Z̄

) (
Z (s j)− Z̄

)
for each pair of obs.
Plot vs. distance
Empirical covariogram cloud

Or, can calculate 1
2 (Z (s i )− Z (s j))2

Empirical semivariance cloud

Notice that don’t have to calculate Z̄ to estimate the semivariance

These are related: When σ2 constant,

1

2
(Z (s i )− Z (s j))2 = σ2 −

(
Z (s i )− Z̄

) (
Z (s j)− Z̄

)
Example: covariogram and semivariogram clouds for the Swiss rain
data
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Semivariogram plot

Smooth semivariogram cloud by averaging

“Classical” or Matheron estimator

γ̂(h) =
1

2 N(h)
ΣN(h) [Z (s i )− Z (s j)]2

Sum over pairs of points separated by distance h

N(h) is number of pairs

Easy to do above on a grid.

When locations are irregular, have to create “distance bins”

Define a range of distances = a bin, e.g. 0-25000m
Calculate mean distance and mean semivariance for the bin
Repeat for rest of bins

Plot X = mean distance vs. Y= mean semivariance
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Choice of bin size/number

How precise is the estimated semivariance?

Var γ̂(h) ≈ 2γ(h)2

N(h)

How big should the bin be?

Want at least 30, preferably 50 or more, pairs per bin

Choice of binning matters

very common to make all bins equally wide
but, N(h) often small for large h
γ̂(h) not very precise, semivariogram is erratic

Solution: don’t calculate γ̂(h) for large distances

one recc.: calculate γ̂(h) to 1/2 max distance
Swiss rain: max distance is 291 km, so calculate to h = 150 km.
Notice default max distance in R is less

Would like to have 10-15 bins, but # pairs more important
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Choice of bin size/number

N(h) often small at short distances, when locations irregular

less of a problem because γ(h) small, so Var γ̂(h) small

Alternative is to have equal # pairs per bin

→ wide bins for short distances and very long distances
concern is loss of information about γ̂(h) at small h
that info. is crucial for fitting models to semivariograms

I tend to use equi-distant bins without large lag distances
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Cressie-Hawkins estimator

Classical estimator is very sensitive to outliers
One unusual value can really mess up γ̂(h) because used in N-1 pairs.

Cressie-Hawkins estimator is more robust to outliers

γ̂(h)CH =
0.5
[
ΣN(h) | Z (s i )− Z (s j) |1/2

]4
0.457 + 0.494

N(h) + 0.045
N(h)2

Where does this come from?
| Z (s i )− Z (s j) |1/2 is not dominated by a single large squared
difference
That makes C-H more robust to outliers
When Z (s) ∼ N(0, 1),

E
1

N(h)

[
ΣN(h) | Z (s i )− Z (s j) |1/2

]4
≈ 2γ(h)

[
0.457 +

0.494

N(h)
+

0.045

N(h)2

]
⇒ C-H estimator (also called robust SV estimator)

With either estimator, plot of X=h vs. Y=γ̂(h) describes the pattern
of spatial correlation
Often (but not always) CH and Matheron estimates are similar
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Semivariogram parameters

Three important numbers that describe the semivariogram:
nugget, sill, and practical range

0.
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0
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Semivariogram parameters

Nugget: γ(0), semivariance at 0 distance.

Replicate observations at a single location assumed to be identical
(variance=0)
nugget = micro-scale variation
term from mining geology:
nuggets of metal in ore → micro-scale variation

Sill: γ(h), for large h.

If σ2 constant, sill = σ2

Sill is an asymptote, technically, γ(h) never equals sill.

Practical range: where γ(h) = 0.95(sill − nugget)

obs. separated by more than the practical range are essentially
uncorrelated.
0.95 is traditional, other fractions sometimes used.

All above assumes one spatial process.

Can have multiple sills and practical ranges if multiple processes
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Semivariogram models

If field is second order stationary,

γ(h) = σ2 − Cov (h) = Cov (0)− Cov (h), so
Cov (h) = Cov (0)− γ(h)

Now all need to do is estimate γ(h) for any h

A: Model γ(h). We will focus on three parametric models:

Spherical:
γ(h) = σ2

[
3

2

h

α
− 1

2

(
h

α

)3
]
, for h ≤ α

Cov exactly 0 for h > α

Exponential:
γ(h) = σ2[1− exp(−3h/α)]

Gaussian:
γ(h) = σ2[1− exp(−3

(
h

α

)2

)]

In all, α is the practical range, σ2 is the sill
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Semivariogram models

Exponential and Gaussian are two specific examples of models in the
Matern class, a large family of semivariogram models

γ(h) = σ2

[
1− 1

Γ(k)

(
θh

2

)k

2Kk(θh)

]

Γ(k) and K (θh) are math special functions (Gamma and modified
Bessel fn of 2nd kind, order k)
θ controls the range, = 1/α, σ2 controls the sill
k controls the shape of the variogram
Gaussian is k = 2, exponential is k = 0.5.

k = 1 is the Whittle model. I have found it quite useful

γ(h) = σ2
[

1− h

α
K1

(
h

α

)]
The Gaussian is one of the historical, traditional models

Current opinion is to avoid it, corr ≈ 1 for nearby locations.
Wackernagel, 2003. The Gaussian model is “pathological”.

c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 3b Spring 2020 21 / 56



More variogram models

linear: γ(h) = θh

no sill!, unless you force one.
Not second order stationary, C (0) = σ2 doesn’t exist unless you force a
sill
But is intrinsic stationary:
Var (Z (s i )− Z (s j)) is constant for any distance h
So semivariogram is well defined
My experience is that a linear trend semivariogram usually indicates
trend across the study area
I suggest modeling the trend, then computing a semivariogram from
the residuals from that trend

wave or hole-effect:

γ(h) = σ2
[

1−
(
h

α

)
sin

(
h

α

)]
models periodic spatial patterns
picture on next slide
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Nuggets

Can add to any model

e.g. Exponential with nugget

γ(h) = σ20 + σ2 [1− exp(−3h/α)]

σ2 now called partial sill, is the spatially-associated variation
σ2
0 is the micro-scale variation

In practice, very few pairs of observations are really close to each
other, i.e. with h ≈ 0

So, the estimated nugget is an extrapolation down to h = 0
nugget can be very sensitive to the choice of semivariogram model.

Even if there is a nugget, γ(0) is still defined as 0
The Kriging prediction at an obs. location is the obs. value
But, γ(ε) = nugget, where ε is a very small number
Which means that the prediction of Z (s) can be quite different a very
small distance away from that observed location

Will talk later about “measurement error Kriging” which is not a
perfect predictor at observed locations

And redefines what “nugget” means.
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Estimating a SV model

Given an empirical average SV or SV cloud and a model, how do you
estimate the SV model parameters (e.g. σ2, α, and perhaps σ20)?

All SV models are non-linear functions of their parameters

Not X1iβ1 + X2iβ2
Still use least-squares

Could fit to cloud, but tradition is to fit to binned averages
Given γ̂(hi , θ) for a set of bins, a specific model, and parameters θ

Find θ = (σ2, α, σ2
0) for which Σ [γ(hi )− γ̂(hi , θ)]2 is as small as

possible
Same criterion as linear regression

No closed-form solution - need iterative algorithm

must provide starting values
bad start → big trouble
generally well-behaved if start is reasonable

I (and everyone else) uses eyeball guess as starting values
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Fitting SV models

One issue:

LS assumes all obs equally important
But, if Var Y2 > Var Y1, want to give more attention to fitting Y1

more closely

Remember Var (γ̂(h) ≈ 2γ(h)
2

#pts

more pts →↓ Var
↑ γ̂(h) →↑ Var

Used weighted LS to put more emphasis on obs with lower variance

Minimize Σwi [γ(hi , θ)− γ(hi )]2

statistically optimal weights are wi = 1/Var γ(hi )
Problem: Var depends on γ(h), which is what we are trying to
estimate!
Solution (not the only one): use wi = #pts

h2 as the weight
assumes γ(h) ≈ h
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Which SV model to use?

Which model to use? Two approaches:

1) which model best fits semivariogram

use wt SS as measure of fit. For Swiss rainfall:

Exponential: SS = 1.608
Spherical: SS=1.184
Gaussian: SS=1.258
Matern, k=0.25: won’t fit
Matern, k=5: 1.153
Matern, k=4: 1.140
Suggests Spherical or Matern with k=4

2) which model gives most accurate predictions?
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Which SV model to use?

One small problem with assessing predictions

Using data twice:

Once to fit SV model
Again, to assess precision of predictions

known to be overly optimistic and favor models with more parameters

leads to overfitting data at hand

Three solutions, all often used:

1) Training/test set

fit model to subset of data (training set)
evaluate on remaining data (test set)
requires arbitrary division into training and test
both are subsets of full data set
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Cross-validation

2) cross-validation

remove 1st obs, using N − 1 obs. to fit SV and predict Z (s1)

calculate squared error for 1st obs:
[
Z (s1)− Ẑ (s1)

]2
Ẑ (s1) NOT based on Z (s1), so valid “out-of-sample” prediction
return 1st obs. to data set, remove 2nd obs., repeat above
repeat for all obs., average squared errors

gives mean squared error of prediction: 1
N

[
(Z (s i )− Ẑ (s i )

]2
exact same concept as PRESS statistic in linear regression

3) k-fold CV

If many points, leave-one-out can be slow
Divide data into k “folds”=sets of obs., k=5 and k=10 are common
remove entire set of obs., fit model on 90% (for k=10) of data
predicte omitted points, calculate rMSEP
repeat for all other parts
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Cross-validation

For Swiss rainfall data:

Exponential: MSEP = 3615
Spherical: MSEP = 3447
Gaussian: MSEP = 3725
Matern, k=5: 3610
Matern, k=4: 3591

Suggests Spherical (one of two with good fit)

But, none substantially better than any other

CV also provides a way to assess overall quality of the model

plot predicted values vs residuals - should be flat sausage, just like for
linear regression
spatial (or bubble) plot of residuals - should be no big clusters
plots on next page
Compare range of residuals to range of obs. values
obs. values: 0 to 493, residuals: -240 to 160
more variability than probably would like
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Other ways to fit SV models

REML (REstricted/REsidual Maximum Likelihood)

likelihood-based, after removing fixed effects
avoids binning
most commonly used with linear models for trend / treatment effects

More advanced methods

Composite likelihood and generalized estimating equations
not commonly used

Final point about Swiss rainfall data

seems not isotropic (plot of ’variogram map’ on next page)
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Local prediction

Currently, using all observations to make predictions

Only have to compute Σ−1 once

What if you have a large number of observations (e.g. 1 million)
Σ is too large

Or, believe µ changes over space (and you don’t want to model that
change)

use only nearby obs. to predict at a location

This is called “local prediction”

Either use some max. # obs., or all obs. within some specified
distance of prediction location.
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Anisotropy

We’ve talked about visual assessment of anisotropy

Variogram maps and directional variograms

How to deal with different types of anisotropy

Geometric anisotropy:
Range longer in one direction than another
Nugget and (partial) sill same in all directions
Rotate coordinate system so longer direction aligned with an axis
Then rescale that axis
Do this by:

s∗ =

[
1 0
0 λ

] [
cos θ − sin θ
sin θ cos θ

]
s

Where θ is the angle of the major axis and λ is the ratio of length of
minor to length of major axis

c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 3b Spring 2020 38 / 56



Zonal anisotropy

variogram sills vary with direction

The direction with the shorter range also has the shorter sill.

model by a combining an isotropic model and a model which depends
“only on the lag-distance in the direction θ of the greater sill”
(Schabenberger and Gotway, 2005, p 152).

γ(h) = γ1(|| h ||) + γ2(hθ)

Chiles and Delfiner (1999, p. 96) warn against axis-specific models,
e.g.: γ(h) = γ1(hx) + γ2(hy )

Under certain circumstances they can lead to Var Z (s) = 0, which not
good.
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Kriging with anisotropy

Geometric anisotropy

Do not have to transform and back transform coordinates

krige() can do this for you

in the vgm() specification of the variogram model,

add anis=c(θ, λ)
θ is the direction of the longest range (highest correlation)
in degrees, measured clockwise from the + vertical axis (N)
λ is the ratio of minor range to major range (a value from 0 to 1)
so anis=c(60,0.2) specifies a major axis at 2 o’clock with a length 5
times the minor axis.

Zonal anisotropy

“fake it” by setting up a geometrically anisotropic component with a
major axis much longer than the minor axis (e.g. λ = 0.00001.
Only distances only along the major axis contribute to γ(h)
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Measurement error kriging

Remember the effect of the nugget:

At the location of an observed value, Ẑ (s) = Z (s).
and Var Ẑ (s) = 0 at that location
but any small distance away from that s, Var Z (s + h) = σ2

nugget

Kriging “honors the data”

Assumes that a hypothetical repeat observation at s will be exactly
the same number

What if there is measurement error in Z (s)?

So, a repeat measurement at same location will not be the same value.

Now, do not want to honor the data (because what we observe
includes non-repeatable measurement error)

Identification problem: have only one obs. per location.
Can not separate nugget from measurement error

Need outside information / guess about the magnitude of the
measurement error
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Measurement error kriging

If you “know” σ2meas. error , then can account for this when kriging

Consequence is that prediction at observed locations is a “smoothed”
version of the observations.

Simplest example of the difference is a pure nugget process
no spatial correlation at the spatial scale of the observations

If 100% nugget, prediction is the mean value except at the observed
values

If 50% nugget, 50% meas. error, prediction at observed values pulled
towards the mean

If 100% meas. error, prediction is almost the mean everywhere

Pictures on next three slides
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Measurement error kriging

Specify a known measurement error by adding Err=value to vgm
model

Must specify specific value. Can not (to my knowledge) estimate it

Data can not separate nugget (micro-scale variation) and meas. error
unless there are repetitions at the same location.
2 obs with same loc. are a problem for most software
Correlation = 1, so VC matrix no longer full rank
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Block Kriging

To now, we’ve focused on predicting Z(s) individual locations

locations assumed to be points w/o area
(physical/mathematical simplification, not reality)

In many applications, want to predict total over some area

total and mean interconvertable: total = mean*area

Areas are not undividable units

experiment on people. A person is a clearly defined, undividable unit
experiment in a field. You choose the plot size - no clearly defined
undividable unit

Called the Modifiable Areal Unit Problem (MAUP)

both size and shape of area matter
inferences depend on both
e.g. Variance between “replicate” field plots depends on size and shape
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Block Kriging

MAUP is one example of a “change of support” problem

Support: size, shape, and orientation of a unit associated with a
measurement

Changing support, e.g. by averaging or aggregating,

creates new random variables (for the new plots)
related to original r.v’s, but spatial and statistical properties are
different
e.g. semivariogram parameters will change

c© Philip M. Dixon (Iowa State Univ.) Spatial Data Analysis - Part 3b Spring 2020 48 / 56



Block Kriging

Block Kriging is a second ex. of a COSP

predict Z (B) for block B with area | B |:

Z (B) =
1

| B |

∫
B
Z (s) ds

Z(B) is an average, so total in the block / area of block
In practice, predict at a grid of point locations within B, and average:
Z (B) = ΣλiZ (s i )
choose λi to minimize MSEP
like OK, but based on “point-to-block” covariances

Cov (Z (B),Z (s i )) =
1

| B |

∫
B

Cov(Z (u),Z (s i )) du

Again, approx. by setting up a grad of pts in B:

Cov (Z (B),Z (s i )) =
1

N
ΣjCov(Z (uj),Z (s i )) du
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Non-linear Kriging

reminder: Best predictor (smallest MSEP) is E [Z (s0) | Z(s)]

Gaussian: linear function of observations: ΣλiZ (s i )
Other distributions: still want E [Z (s0) | Z(s)], but that won’t be a
linear fn of obs.

Log Normal kriging

logZ (s i ) ∼Gaussian, use log-transformed obs., predict

P(s0) = l̂ogZ (s0)
then back transform: Ẑ (s0) = expP(s0)
P(s0) is an unbiased prediction of logZ (s0), but expP(s0) is a biased
predictor of Z (s0).
Jensen’s inequality, demonstrated by HW 1 question
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LogN kriging: Solutions

1) Ignore the problem, focus on medians

expP(s0) is an asymptotically unbiased estimate of the median of
Z (s0).

2) Use properties of logN distribution

when logZ (s0) ∼ N(µ, σ2), E Z = exp(µ+ σ2/2, E
Ẑ (s0) = exp(µ+ Var Ẑ (s0)/2
so predict logZ (s0),
calculate σ2(s0) = Var Ẑ (s0),
estimate σ2 (e.g. by sill)
predictor of Z (s0) is

P(s0) = exp
[
l̂ogZ (s0) + σ2/2− σ2(s0)/2

]
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Trans-Gaussian Kriging

log is one member of the Box-Cox family of transformations. For
these

Z ∗(s0) =

{
Z(s0)λ−1

λ λ > 0
logZ (s0) λ = 0

λ = 1⇒ no transformation
λ = 0.5⇒ proportional to

√
Z (s0) transformation

λ = −1⇒ proportional to 1/Z (s0) transformation
purpose of X−1

λ is so that limit as λ→ 0 is log transformation

Since kriging minimizes MSEP, want / prefer symmetric distribution
of values

if including covariates (UK), want / prefer symmetric distribution of
residuals
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Indicator Kriging

What if you want to predict an exceedance probability,
P[Z (s0) > threshold ]

e.g. legal limit on concentration of mercury in fish

Kriging predicts E [Z (s0) | Z(s)]
Define Z ∗(s0) = I (Z (s0) > threshold )

Z∗(s0) = 1 if condition is true (Z (s0) > threshold )
Z∗(s0) = 0 if condition is false (Z (s0) ≤ threshold )
E Z∗(s0) = P[Z (s0) > threshold ]

Apply indicator transformation to all obs,
estimate semivariogram from indicator variables (can be hard)
then krige.
Issues:

no guarantee that 0 ≥ p ≥ 1
remember, Ẑ (s0) can exceed range of data
variety of ad-hoc fixes
there are more complicated methods
my general sense is they don’t work markedly better
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Indicator Kriging

Can use many thresholds to approximate the cdf of Z (s0)

Define Z1(s) to be I (Z (s) < k1),
and Z2(s) to be I (Z (s) < k2),
for many values of k
gives you predictions of F̂ (k1), F̂ (k2), . . .

Note: E Z ∗(s0) | Z ∗(s) is not the same as E Z ∗(s0) | Z (s) because
the indicator transformation “throws away” information.
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Disjunctive Kriging

Extend indicator kriging from 2 regions (e.g. Z (s0) < 10 or
Z (s0) ≥ 10) to many

e.g. Z (s0) < 10, 10 ≥ Z (s0) < 20, 20 ≥ Z (s0) < 30, . . .

Knowing 10 ≥ Z (s0) < 20 is more informative than knowing only
that Z (s0) < 20 (IK)

very elegant math (which we’ll ignore)

→ predict any function g(Z (s0)), including the set of indicator
functions

Richard Webster has published a lot of ag-related studies using
disjunctive kriging

Only available in R in the Rgeostats package

Note: can combine block kriging ideas with any of the non-linear
krigers

e.g. define 1km x 1km areas and estimate P[soil N > threshold ]
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