Semivariograms

o All forms of kriging assume you know Cov (Z(s;), Z(s;))
@ Usually, need to estimate this

o Big problem: only have one observation at s; and one at s;
o usual data-based estimate won't work!
e Also, need vector of Cov (Z(sg), Z(s;)) when haven't observed Z(sg)

@ Need a model! How does Cov (Z(s;), Z(s;j)) depend on:
o distance between s; and s;

o direction from s; to s;
o location of s; and s; in the study area
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@ Two pairs of points, same direction, same distance,
different parts of study area

@ Same covariance?

N

A'r(CC‘f-‘"‘-

@
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Stationary spatial processes

@ 2nd order stationary ~

)) o u(s) constant across study area

2)° Cov (Z(s), Z(s+ h)) same across study area
h specn‘nes a particular distance and direction

e So in previous picture, the two pairs of points would have same Cov
@ instrinsic stationarity

™ e Var (Z(s) — Z(s + h)) same everywhere
o STightly weaker assumption
e Some really care about the difference. | don't.
@ We'll assume 2nd order stationarity

© Philip M. Dixon (lowa State Univ.)
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Isotropic spatial process

e Cov (Z(s), Z(s + h)) same in all directions
Only depends on distance between two points, i.e. || hl|

@ Anisotropic: Cov (Z(s), Z(s+ h)) depends on direction

e ———
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| | | | | | | | | |
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20000 — o ° —
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e
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Anisotropic spatial process

@ Geometric anisotropy: simple scaling & rotation — isotropy
draw picture on board
@ For the most part, we will assume isotropy
o If geometric anisotropy, can transform coordinates to make isotropic
o If general anisotropy, can repeat what we're about to do in different
directions
more complications, more details, no change in concept
@ So, Cov (Z(sj), Z(sj)) depends on ||s; — s;|, i.e. Euclidean distance
between s; and s;

o If working over large areas, should use great circle distance instead
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Semivariogram cloud

Assuming 2nd order stationarity, so j constant Q({ "X) (\/( "'\/)

so can calculate (Z(s;) — Z) (Z(s;)— Z)
e for each pair of obs. .
o Plot vs. distance | $3+15Pj
o Empirical covariogram cloud

Or, can calculate 3 (Z(s;) — Z(sj))2
o Empirical semivariance cloud

ey

Notice that don’t have to calculate Z to estimate the semivariance

These are related: When &2 constant,

(Z(si) = Z(s))* = 0% = (Z(s1) = Z) (2(s}) - 2)

N

Example: covariogram and semivariogram clouds for the Swiss rain
data
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Semivariogram plot

@ Smooth semivariogram cloud by averaging

@ “Classical” or Matheron estimator

3&0\;\){‘-‘\’7(/") 2N( )ZN(h ) [Z(si) — Z(s)I?

SEMVorance at A
Sum over pairs of points separated by distance h

N(h) is number of pairs

Easy to do above on a grid.

When locations are irregular, have to create “distance bins”

o Define a range of distances = a bin, e.g. 0-25000m
o Calculate mean distance and mean semivariance for the bin
o Repeat for rest of bins

@ Plot X = mean distance vs. Y= mean semivariance
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Choice of bin size/number

@ How precise is the estimated semivariance?

Var 4(h) ~ 2/?/((:)) ~

@ How big should the bin be?
o Want at least 30, preferably 50 or more, pairs per bin 5’0

/0O

@ Choice of binning matters

e very common to make all bins equally wide

o but, N(h) often small for large h

o 4(h) not very precise, semivariogram is erratic
@ Solution: don't calculate 4(h) for large distances

e one recc.: calculate 4(h) to 1/2 max distance
o Swiss rain: max distance is 291 km, so calculate to h = 150 km.
o Notice default max distance in R is less

@ Would like to have 10-15 bins, but # pairs more important
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Choice of bin size/number

e N(h) often small at short distances, when locations irregular
o less of a problem because ~y(h) small, so Var 4(h) small
@ Alternative is to have equal # pairs per bin

e — wide bins for short distances and very long distances
e concern is loss of information about 4(h) at small h
e that info. is crucial for fitting models to semivariograms

o | tend to use equi-distant bins without large lag distances
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Semivariance

Semivariance
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Cressie-Hawkins estimator

@ Classical estimator is very sensitive to outliers
o One unusual value can really mess up 4(h) because used in N-1 pairs.
@ Cressie-Hawkins estimator is more robust to outliers

05 [Zugn | Z(s) — 2(sy) [V2)*

0.494 0.045

A(h)cH

—

@ Where does this come from? J__
o | Z(s;) — Z(s;) |*? is not dominated by a single large squared
difference
e That makes C-H more robust to outliers
o When Z(s) ~ N(0,1),

4
E ﬁ [zN(h) | Z(s:) — Z(s;) |1/2} ~ 2+(h) [0.457 + % + ,?/?:)52]
o = C-H estimator (also called robust SV estimator)
@ With either estimator, plot of X=h vs. Y=4(h) describes the pattern
of spatial correlation

@ Often (but not always) CH and Matheron estimates are similar
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Semivariogram parameters

@ Three important numbers that describe the semivariogram:
nugget, sill, and practical range

sill

e s
A
Sew :
Vorzac e

nugget
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Semivariogram parameters

o Nugget: 7(0), semivariance at 0 distance.

o Replicate observations at a single location assumed to be identical
(variance=0)
e nugget = micro-scale variation c
58 o _ g((ﬂ\ 245
e term from mining geology:
nuggets of metal in ore — micro-scale variation

Sill: y(h), for large h.
® et

e If o2 constant, sill = o2
o Sill is an asymptote, technically, v(h) never equals sill.
e Practical range: where y(h) = 0.95(sill — nugget) 4 n..ﬂd'
o obs. separated by more than the practical range are essentially
uncorrelated.
e 0.95 is traditional, other fractions sometimes used.

All above assumes one spatial process.

Can have multiple sills and practical ranges if multiple processes
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Semivariogram models

2
o If field is sem, c
o y(h =0% — Cov (h) = Cov (0) — Cov (h), so
= Cov (0) —y(h)
Now all fieed to do is estimate (h) for any h

A: Model ~v(h). We will focus on three parametric models:

e EZ 3 @3] forh<a exadthat
| «

s.(l
o Cov exactly 0 for h > « h’(l\} = 0-1 L‘\ DL & Pfat‘k@-'

;

. Vaug ¢

e Exponential: v(h) = 0®[1 — exp(—3h/a)] J
1 { -

@ Gaussian: il h e

e In all, a is the practical range, o2 is the sill
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Semivariogram models

@ Exponential and Gaussian are two specific examples of models in the
Matern class, a large family of semivariogram models

k
v(h) = o2 [1 — I’(lk) (?) 2K, (6h)

e (k) and K(0h) are math special functions (Gamma and modified
Bessel fn of 2nd kind, order k)

@ntrols the range, = 1/a, o2 controls the sill
e k controls the shape of the variogram
o Gaussian is k = 2, exponential is k = 0.5.
@ k =1 is the Whittle model. | have found it quite useful

- (2)

@ The Gaussian is one of the historical, traditional models
o Current opinion is to avoid it, corr ~ 1 for nearby locations.
o Wackernagel, 2003. The Gaussian model is “pathological”.
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More variogram models

o linear: y(h) = 0h

e no silll, unless you force one.

o Not second order stationary, C(0) = o2 doesn't exist unless you force a
sill

e But is intrinsic stationary:
Var (Z(si) — Z(sj)) is constant for any distance h

e So semivariogram is well defined

e My experience is that a linear trend semivariogram usually indicates
trend across the study area

o | suggest modeling the trend, then computing a semivariogram from
the residuals from that trend

@ wave or hole-effect: A A
2(h) = 02 [1 _ <> sin <>}
o o

e models periodic spatial patterns
e picture on next slide
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More Semivariogram models
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e Can add to any mc.)del {\M‘j"‘k G_Q. T .
o e.g. Exponential with nugget —_— 2 <,
A0 €03 ) 011 —e(-3h/0)] fj e ke

- -
e 02 now called partial sill, is the spatially-associated variation

e 02 is the micro-scale variation
@ In practice, very few pairs of observations are really close to each
other, i.e. with h= 0
e So, the estimated nugget is an extrapolation down to h =0
e nugget can be very sensitive to the choice of semivariogram model.
@ Even if there is a nugget, 7(0) is still defined as 0
o The Kriging prediction at an obs. location is the obs. value
o But, v(€) = nugget, where € is a very small number
o Which means that the prediction of Z(s) can be quite different a very
small distance away from that observed location
o Will talk later about “measurement error Kriging” which is not a
perfect predictor at observed locations

@ And redefines what “nugget” means.
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Estimating a SV model

@ Given an empirical average SV or SV cIoud and a model, how do you
estimate the SV model parameters (e.g. o2, «, and perhaps 00)7

o All SV _models are non-linear functions of their Waran;eters

A LN
@ Not X].IB]. + X2152 Q&l 2
i — —_— mo ?
@ Still use least-squares
e Could fit ut tradition is to fit to binned averages
fgr a set of bins, a specific mmete
o Find8=4>"0, 02) for which ¥ [y(h;) — 4(h;, 0)]° is as small a
possible ———

e Same criterion as linear regression -l:(..g (’( &
Ac Mo oshwes

@ No closed-form solution - need iterat®e algorithm

e must provide starting values
e bad start — big trouble
o generally well-behaved if start is reasonable

o | (and everyone else) uses eyeball guess as starting values
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Fitting SV models

@ One issue:
o LS assumes all obs equally important
e But, if Var Y, > Var Y7, want to give more attention to fitting Y
more closely

N h)?
o Remember Var (§(h) ~ 2;(,,25

@ more pts —| Var
o 14(h) =7 Var

@ Used weighted LS to put more emphasis on obs with lower variance
o Minimize Tw; [y(h;,0) — v(hi)]?

o statistically optimal weights are w; = 1/Var ~v(h;)
Problem: Var depends on «(h), which is what we are trying to

estimate!
Solution (not the only one): use w; = % as the weight
assumes y(h) = h

Spring 2020 27 /56
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Which SV model to use?

""(Q;QTJ\) "qdm

@ Which model to use? Two approaches: :'-> g‘{ ”ajﬂ{

Nneo oln-+4 /1‘(51‘

@ use wt SS as measure of fit. For Swiss rainfafl: =) Ct-\n‘ e
Exponential: SS = 1.608 “‘['

Spherical: SS=1.184 e—— f(l.ﬂ. .'I‘"l

Gaussian: S5=1.258

Matern, k=0.25: won't fit

Matern, k=5: 1.153

Matern, k=4: 1.140 =—

Suggests Spherical or Matern with k=4

@ 1) which model best fits semivariogram —

@ 2) which model gives most accurate predictions?

e

e ——
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Which SV model to use?

dado. — G amdd

One small problem with assessing predictions

Using data twice:

e Once to fit SV model
e Again, to assess precision of predictions

sty

known to be overly optimistic and favor models with more parameters
leads to overfitting data at hand

Three solutions, all often used:
1) Training/test set

fit model to subset of data (training set)
evaluate on remaining data (test set)

requires arbitrary division into training and test
both are subsets of full data set
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Cross-validation

Nobs |eave me oot (4t ob-
@ 2) cross-validation <~ /£ OO / ?
o remove 1st obs, using N — 1 obs. to fit SV and predict Z(s1)

Smm—

. 2
o calculate squared error for 1st obs: {Z(sl) - Z(sl)w

Z(s1) NOT based on Z(s;), so valid “out-of-sample” prediction
return 1st obs. to data set, remove 2nd obs., repeat above
repeat for all obs., average squared errors

R 2
o gives mean squared error of prediction: [(Z(s,-) - Z(s;)}
e exact same concept as PRESS statisticTn linear regressiom
e 3) k-fold CV

o If many points, leave-one-out can be slow
Divide data into k “folds” =sets of obs., k=5 and k=10 are common
remove entire set of obs., fit model on 90% (for k=10) of data
predicte omitted points, calculate rMSEP
repeat for all other parts
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Cross-validation

o
@ For Swiss rainfall data: LO

Exponential: MSEP = 3615
Spherical: MSEP = 3447 ~—
Gaussian: MSEP = 3725
Matern, k=5: 3610

Matern, k=4: 3591

@ Suggests Spherical (one of two with good fit)

@ But, none substantially better than any other

@ CV also provides a way to assess overall quality of the model

o plot predicted values vs residuals - should be flat sausage, just like for
linear regression

e spatial (or bubble) plot of residuals - should be no big clusters
plots on next page

o Compare range of residuals to range of obs. values
obs. values: 0 to 493, residuals: -240 to 160
more variability than probably would like
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Other ways to fit SV models

e REML (REstricted/REsidual Maximum Likelihood)

o likelihood-based, after removing fixed effects
e avoids binning
e most commonly used with linear models for trend / treatment effects

@ More advanced methods

e Composite likelihood and generalized estimating equations
e not commonly used

@ Final point about Swiss rainfall data
e seems not isotropic (plot of 'variogram map' on next page)

© Philip M. Dixon (lowa State Univ.) Spatial Data Analysis - Part 3b Spring 2020 34 /56



u&ﬂrlgﬁr@w\ IMQ() : I&aﬁlak Ml‘imgmq

varl
L 30000
100000 =
r 1 C__
|Se boo Q
L 25000
50000 -| -
L 20000
>
04 L
© L 15000
[ pdaf
Mgt
-50000 P 10000
L 5000
~100000 - -

T T T T T
-100000  -50000 0 50000 100000

dx

© Philip M. Dixon (lowa State Univ.) Spatial Data Analysis - Part 3b Spring 2020 35 /56



[0,98.6]

(98.6,197.2] —
(197.2,295.8]

(295.8,394.4]

(394.4,493]

© Philip M. Dixon (lowa State Univ.) Spatial Data Analysis - Part 3b Spring 2020 36 /56



Local prediction

@ Currently, using all observations to make predictions
@ Only have to compute X! once

e What if you have a large number of observations (e.g. 1 million)
2 is too large

@ Or, believe 1 changes over space (and you don’t want to model that
change)

@ use only nearby obs. to predict at a location
@ This is called “local prediction”

o Either use some max. # obs., or all obs. within some specified
distance of prediction location.
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@ We've talked about visual assessment of anisotropy /ﬁ
Variogram maps and directional variograms

@ How to deal with different types of anisotropy e
Geometric anisotropy:
Range longer in one direction than another
Nugget and (partial) sill same in all directions Ny

Rotate coordinate system so longer direction aligned with an a

Then rescale that axis (¢scale rotaton
Do this by: o~~~ ,D
s*—{l 0 [cos@ —sinﬁ}

0 A sinf cos

Where 0 is the angle of the major

minor To fength of major axis 1/
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Zonal anisotropy

@ variogram sills vary with direction
@ The direction with the shorter range also has the shorter sill.

@ model by a combining an isotropic model and a model which depends
“only on the lag-distance in the direction 6 of the greater sill”
(Schabenberger and Gotway, 2005, p 152).

v(h) =7 (]l b []) + 72(ho)

@ Chiles and Delfiner (1999, p. 96) warn against axis-specific models,
e.g.: Y(h) = 71(hx) +72(hy)
o Under certain circumstances they can lead to Var Z(s) = 0, which not
good.
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Kriging with anisotropy

Geometric anisotropy
Do not have to transform and back transform coordinate

krige() can do this for you

in the vgm() specification of the variogram model, AN
) s©

e add anis=c(6, \)

o 0 is the direction of the longest range (highest correlation)
in degrees, measured clockwise from the + vertical axis (N)
A is the ratio of minor range to major range (a value from 0 to 1)
so anis=c(60,0.2) specifies a major axis at 2 o'clock with a length 5
times the minor axis.

Zonal anisotropy
o “fake it" by setting up a geometrically anisotropic component with a
major axis much longer than the minor axis (e.g. A = 0.00001.
e Only distances only along the major axis contribute to ~y(h)
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Measurement error kriging

@ Remember the effect of the nugget: ‘< ~saaek
o At the location of an observed value, Z(s) = Z(s). -
e and Var Z(s) = 0 at that location Qigten (<
o but any small distance away from that s, Var Z(s + h) = 02, et

@ Kriging “honors the data”

@ Assumes that a hypothetical repeat observation at s will be exactly
the same number
e What if there is measurement error in Z(s)?
e So, a repeat measurement at same location w_iII not be the same value.

@ Now, do not want to honor the data (because what we observe
includes non-repeatable measurement error)

o ldentification problem: have only one obs. per location.
Can not separate nugget from measurement error

o Need outside information / guess about the magnitude of the
measurement error
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Measurement error kriging
) pégsed
(E J m&fg

2 then can account for this when kriging

b 1
o If you "know O meas. errort

@ Consequence is that prediction at observed locations is a “smoothed”
version of the observations.

@ Simplest example of the difference is a pure nugget process
no spatial correlation at the spatial scale of the observations

@ If 100% nugget, prediction is the mean value except at the observed
values

e If 50% nugget, 50% meas. error, prediction at observed values pulled
towards the mean

@ If 100% meas. error, prediction is almost the mean everywhere
@ Pictures on next three slides
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Measurement error kriging

J ATGALE .

@ Specify a known measurement error by adding Err=value to vgm
model
@ Must specify specific value. Can not (to my knowledge) estimate it

e Data can not separate nugget (micro-scale variation) and meas. error
e unless there are repetitions at the same location.

o 2 obs with same loc. are a problem for most software

o Correlation = 1, so VC matrix no longer full rank
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Block Kriging

/F:acfgew\- S\u.d&\ J Gl Tare € {c-:A..J
@ To now, we've focused on predicting Z(s) individual locations
o locations assumed to be points w/o area
o (physical/mathematical simplification, not reality)
@ In many applications, want to predict total over some area
o total and mean interconvertable: total = mean*area
@ Areas are not undividable units

e experiment on people. A person is a clearly defined, undividable unit
e experiment in a field. You choose the plot size - no clearly defined
undividable unit

o Called the Modifiable Areal Unit Problem (MAUP)

e both size and shape of area matter
e inferences depend on both
e e.g. Variance between “replicate” field plots depends on size and shape
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Block Kriging

@ MAUP is one example of a “change of support” problem

@ Support: size, shape, and orientation of a unit associated with a
measurement
o Changing support, e.g. by averaging or aggregating,
e creates new random variables (for the new plots)
o related to original r.v's, but spatial and statistical properties are

different
e e.g. semivariogram parameters will change
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Block Kriging

@ Block Kriging is a second ex. of a COSP
e predict Z(B) for block B with area | B |:

. O Co ”féh*
e Z(B) is an average, so total in the block / area of block %-*( )
a

e In practice, predict at a grid of point locations within B, and aver
Z(B) = Z)\,’Z(S,‘)

o choose \; to minimize MSEP

o like OK, but based on “point-to-block” covariances

Cov (Z(B), Z(s})) | B] / Cov(Z (si)) du
o Again, approx. by setting up a grad of pts in B:

Cov (Z(B), Z(s)) = %z,- Cov(Z(u). Z(s1)) du
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Non-linear Kriging

MJ’J Al P o
e reminder: Best predictor (smallest MSEP) is E [Z(so) | Z(s)]
o Gaussian: linear function of observations: S;

o Other distributions: still want E [Z(sg) | Z(S]], but that won't be a

linear fn of obs.
@ Log Normal kriging

o log Z(s;) ~Gaussian, use log-transformed obs., predict
P(so) = log Z(so) .

o then back transform: Z(sg) = exp P(so)

e P(sp) is an unbiased prediction of log Z(sp), but exp P(sg) is a biased
predictor of Z(sp).

e Jensen's inequality, demonstrated by HW 1 question
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LogN kriging: Solutions

1) Ignore the problem, focus on medians

e exp P(sg) is an asymptotically unbiased estimate of the median of

Z(So).
2) Use properties of logN distribution

o when log Z(so) ~ N(u,0?), E Z = exp(pu + 02/2, E
Z(so) = exp(u + Var Z(so)/2

o so predict log Z(so),
calculate 02(sq) = Var Z(so),
estimate o2 (e.g. by sill)

o predictor of Z(sp) is

—

P(s0) = exp [log Z(s0) ?(s0)/2
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Trans-Gaussian Kriging

@ log is one member of the Box-Cox family of transformations. For

these N
Z(so)*
log Z
e A =1 = no transformation
e A = 0.5 = proportional to \/Z(sg) transformation
e A = —1 = proportional to 1/Z(sg) transformation
e purpose of % is so that limit as A — 0 is log transformation

@ Since kriging minimizes MSEP, want / prefer symmetric distribution
of values

e if including covariates (UK), want / prefer symmetric distribution of
residuals
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Indicator Kriging

@ What if you want to predict an exceedance probability,
P[Z(so) > threshold ]
@ e.g. legal limit on concentration of mercury in fish
e Kriging predicts E [Z(sg) | Z(s)]
o Define Z*(sg) = I(Z(sp) > threshold )
e Z*(sp) = 1 if condition is true (Z(so) > threshold )
o Z*(sp) = 0 if condition is false (Z(sg) < threshold )
o E Z*(sg) = P[Z(so) > threshold ]
@ Apply indicator transformation to all obs,
estimate semivariogram from indicator variables (can be hard)
then krige.
@ Issues:
 no guarantee that 0 >p>1
remember, Z(sg) can exceed range of data
e variety of ad-hoc fixes

e there are more complicated methods
my general sense is they don't work markedly better
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Indicator Kriging

< 2
2~ S
S -0
(o -15 >
e Can use many thresholds to approximate the cdf of Z(sp)
Define Z;(s) to be I(Z(s) < k1),
and Z»(s) to be I(Z(s) < k),
for many values of k A
gives you predictions of F(ky), F(kz), ...
e Note: E Z*(sp) | Z*(s) is not the same as E Z*(sg) | Z(s) because
the indicator transformation “throws away” information.
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Disjunctive Kriging

e Extend indicator kriging from 2 regions (e.g. Z(so) < 10 or
Z(sp) > 10) to many

e eg. Z(sp) <10, 10 > Z(sg) < 20, 20 > Z(sp) < 30, ...

e Knowing 10 > Z(sgp) < 20 is more informative than knowing only
that Z(so) < 20 (IK)

o very elegant math (which we'll ignore)

e — predict any function g(Z(sp)), including the set of indicator
functions

@ Richard Webster has published a lot of ag-related studies using
disjunctive kriging

@ Only available in R in the Rgeostats package

@ Note: can combine block kriging ideas with any of the non-linear
krigers
o e.g. define 1km x 1km areas and estimate P[soil N > threshold|
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